Skip to main content Skip to main navigation menu Skip to site footer

Advances of chronic pain: better insights, better treatment

  • Fengrun Sun
  • Ning Yu
  • Tao Wang

Abstract

Pain is often referred to as the fifth vital sign. It profoundly impacts both physical and psychological well-being, either as a primary condition or in conjunction with other systemic diseases. Pain typically results from complex neurophysiological processes, including peripheral and central sensitization, altered pain pathways, and maladaptive neuroplasticity, which can lead to persistent or chronic pain. Current pharmaceutical treatments, such as non-steroidal anti-inflammatory drugs (NSAIDs) and tricyclic antidepressants, often fall short of desired therapeutic outcomes. To improve efficacy, advanced drug delivery systems (DDS) with extended-release formulations and multimodal analgesia have shown promise. Surgical interventions are increasingly recognized for chronic pain resistant to conservative treatments, while exercise, psychological counseling, and strong social support have proven benefits. This review examines the mechanisms of chronic pain, current management approaches, and explores potential future advancements in analgesic strategies.

Section

References

  1. [1]. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161(9):1976-82. doi: 10.1097/j.pain.0000000000001939.
  2. [2]. Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082-97. doi: 10.1016/S0140-6736(21)00393-7.
  3. [3]. Gatchel RJ, McGeary DD, McGeary CA, Lippe B. Interdisciplinary chronic pain management: past, present, and future. Am Psychol. 2014;69(2):119-30. doi: 10.1037/a0035514.
  4. [4]. Finnerup NB, Kuner R, Jensen TS. Neuropathic Pain: From Mechanisms to Treatment. Physiol Rev. 2021;101(1):259-301. doi: 10.1136/bmj.f7656.
  5. [5]. Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev. 2021;101(1):213-58. doi: 10.1152/physrev.00040.2019.
  6. [6]. Nathan PW. The gate-control theory of pain. A critical review. Brain. 1976;99(1):123-58. doi: 10.1093/brain/99.1.123.
  7. [7]. Lin T, Gargya A, Singh H, Sivanesan E, Gulati A. Mechanism of Peripheral Nerve Stimulation in Chronic Pain. Pain Med. 2020;21(Suppl 1):S6-s12. doi: 10.1093/pm/pnaa164.
  8. [8]. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971-9. doi: 10.1126/science.150.3699.971.
  9. [9]. Xie YK, Luo H, Zhang SX, Chen XY, Guo R, Qiu XY, et al. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Sci Transl Med. 2022;14(639):eabh2557. doi: 10.1126/scitranslmed.abh2557.
  10. [10]. Su W, Cui H, Wu D, Yu J, Ma L, Zhang X, et al. Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J Neuroinflammation. 2021;18(1):65. doi: 10.1186/s12974-020-02066-y.
  11. [11]. Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell. 2014;159(6):1417-32. doi: 10.1016/j.cell.2014.11.003.
  12. [12]. Chen Z, Wang T, Fang Y, Luo D, Anderson M, Huang Q, et al. Adjacent intact nociceptive neurons drive the acute outburst of pain following peripheral axotomy. Sci Rep. 2019;9(1):7651. doi: 10.1038/s41598-019-44172-9.
  13. [13]. Fang Y, Zhu J, Duan W, Xie Y, Ma C. Inhibition of Muscular Nociceptive Afferents via the Activation of Cutaneous Nociceptors in a Rat Model of Inflammatory Muscle Pain. Neurosci Bull. 2020;36(1):1-10. doi: 10.1007/s12264-019-00406-4.
  14. [14]. Vartiainen N, Perchet C, Magnin M, Creac'h C, Convers P, Nighoghossian N, et al. Thalamic pain: anatomical and physiological indices of prediction. Brain. 2016;139(Pt 3):708-22. doi: 10.1093/brain/awv389.
  15. [15]. Sun H, Li Z, Qiu Z, Shen Y, Guo Q, Hu SW, et al. A common neuronal ensemble in nucleus accumbens regulates pain-like behaviour and sleep. Nat Commun. 2023;14(1):4700. doi: 10.1038/s41467-023-40450-3.
  16. [16]. Watanabe M, Narita M, Hamada Y, Yamashita A, Tamura H, Ikegami D, et al. Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain. 2018;14:1744806918756406. doi: 10.1177/1744806918756406.
  17. [17]. Sun L, Liu R, Guo F, Wen MQ, Ma XL, Li KY, et al. The parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat Commun. 2020;11(1):5974. doi: 10.1038/s41467-020-19767-w.
  18. [18]. Gomez K, Santiago U, Nelson TS, Allen HN, Calderon-Rivera A, Hestehave S, et al. A peptidomimetic modulator of the Ca(V)2.2 N-type calcium channel for chronic pain. Proc Natl Acad Sci U S A. 2023;120(47):e2305215120. doi: 10.1073/pnas.2305215120.
  19. [19]. Goodwin G, McMahon SB. The physiological function of different voltage-gated sodium channels in pain. Nat Rev Neurosci. 2021;22(5):263-74. doi: 10.1038/s41583-021-00444-w.
  20. [20]. Kreutzwiser D, Tawfic QA. Expanding Role of NMDA Receptor Antagonists in the Management of Pain. CNS Drugs. 2019;33(4):347-74. doi: 10.1007/s40263-019-00618-2.
  21. [21]. Shin HJ, Na HS, Do SH. Magnesium and Pain. Nutrients. 2020;12(8). doi: 10.3390/nu12082184.
  22. [22]. Zis P, Daskalaki A, Bountouni I, Sykioti P, Varrassi G, Paladini A. Depression and chronic pain in the elderly: links and management challenges. Clin Interv Aging. 2017;12:709-20. doi: 10.2147/CIA.S113576.
  23. [23]. Fox ME, Lobo MK. The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry. 2019;24(12):1798-815. doi: 10.1038/s41380-019-0415-3.
  24. [24]. Chang JR, Fu SN, Li X, Li SX, Wang X, Zhou Z, et al. The differential effects of sleep deprivation on pain perception in individuals with or without chronic pain: A systematic review and meta-analysis. Sleep Med Rev. 2022;66:101695. doi: 10.1016/j.smrv.2022.101695.
  25. [25]. Yin XS, Chen BR, Ye XC, Wang Y. Modulating the Pronociceptive Effect of Sleep Deprivation: A Possible Role for Cholinergic Neurons in the Medial Habenula. Neurosci Bull. 2024;40(12):1811-25. doi: 10.1007/s12264-024-01281-4.
  26. [26]. Oaklander AL. Mechanisms of pain and itch caused by herpes zoster (shingles). J Pain. 2008;9(1 Suppl 1):S10-8. doi: 10.1016/j.jpain.2007.10.003.
  27. [27]. McDougall JJ. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res Ther. 2006;8(6):220. doi: 10.1186/ar2069.
  28. [28]. Qu L, Zhang P, LaMotte RH, Ma C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain Behav Immun. 2011;25(7):1399-407. doi: 10.1016/j.bbi.2011.04.008.
  29. [29]. Qu L, Li Y, Pan X, Zhang P, LaMotte RH, Ma C. Transient receptor potential canonical 3 (TRPC3) is required for IgG immune complex-induced excitation of the rat dorsal root ganglion neurons. J Neurosci. 2012;32(28):9554-62. doi: 0.1523/JNEUROSCI.6355-11.2012.
  30. [30]. Liu F, Shen X, Su S, Cui H, Fang Y, Wang T, et al. Fcγ Receptor I-Coupled Signaling in Peripheral Nociceptors Mediates Joint Pain in a Rat Model of Rheumatoid Arthritis. Arthritis Rheumatol. 2020;72(10):1668-78. doi: 10.1002/art.41386.
  31. [31]. Liu F, Zhang L, Su S, Fang Y, Yin XS, Cui H, et al. Neuronal C-Reactive Protein/FcγRI Positive Feedback Proinflammatory Signaling Contributes to Nerve Injury Induced Neuropathic Pain. Adv Sci (Weinh). 2023;10(10):e2205397. doi: 10.1002/advs.202205397.
  32. [32]. Fiore NT, Debs SR, Hayes JP, Duffy SS, Moalem-Taylor G. Pain-resolving immune mechanisms in neuropathic pain. Nat Rev Neurol. 2023;19(4):199-220. doi: 10.1038/s41582-023-00777-3.
  33. [33]. Han Y, Li Y, Xiao X, Liu J, Meng XL, Liu FY, et al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull. 2012;28(2):165-72. doi: 10.1007/s12264-012-1211-0.
  34. [34]. Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75(8):859-77. doi: 10.1007/s40265-015-0392-z.
  35. [35]. Enthoven WT, Roelofs PD, Deyo RA, van Tulder MW, Koes BW. Non-steroidal anti-inflammatory drugs for chronic low back pain. Cochrane Database Syst Rev. 2016;2(2):Cd012087. doi: 10.1002/14651858.CD012087.
  36. [36]. Flor H, Noguchi K, Treede RD, Turk DC. The role of evolving concepts and new technologies, and approaches in advancing pain research, management, and education since the establishment of the International Association for the Study of Pain. Pain. 2023;164(11s):S16-s21. doi: 10.1097/j.pain.0000000000003063.
  37. [37]. Garcia J, Altman RD. Chronic pain states: pathophysiology and medical therapy. Semin Arthritis Rheum. 1997;27(1):1-16. doi: 10.1016/s0049-0172(97)80032-7.
  38. [38]. He Y, Qin L, Huang Y, Ma C. Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Res Lett. 2020;15(1):13. doi: 10.1186/s11671-019-3241-2.
  39. [39]. Macones GA, Caughey AB, Wood SL, Wrench IJ, Huang J, Norman M, et al. Guidelines for postoperative care in cesarean delivery: Enhanced Recovery After Surgery (ERAS) Society recommendations (part 3). Am J Obstet Gynecol. 2019;221(3):247.e1-.e9. doi: 10.1016/j.ajog.2019.04.012.
  40. [40]. Legg T, Paluch E, Jayawardena S. Single- and Multiple-Dose Pharmacokinetics of Immediate-Release/Extended-Release Ibuprofen Tablets. Clin Pharmacol Drug Dev. 2017;6(1):36-43. doi: 10.1002/cpdd.288.
  41. [41]. Pergolizzi JV, Jr., Taylor R, Jr., Raffa RB. Extended-release formulations of tramadol in the treatment of chronic pain. Expert Opin Pharmacother. 2011;12(11):1757-68. doi: 10.1517/14656566.2011.576250.
  42. [42]. Mongin G. Tramadol extended-release formulations in the management of pain due to osteoarthritis. Expert Rev Neurother. 2007;7(12):1775-84. doi: 10.1586/14737175.7.12.1775.
  43. [43]. Wang T, Hurwitz O, Shimada SG, Tian D, Dai F, Zhou J, et al. Anti-nociceptive effects of bupivacaine-encapsulated PLGA nanoparticles applied to the compressed dorsal root ganglion in mice. Neurosci Lett. 2018;668:154-8. doi: 10.1016/j.neulet.2018.01.031.
  44. [44]. He YM, Sun FR, Li MH, Ji TJ, Fang YH, Tan G, et al. A Gel/Fiber composite formulation achieves sequential delivery based on multimodal analgesia reducing chronic pain. Materials & Design. 2023;225. doi: 10.1016/j.matdes.2022.111541.
  45. [45]. Beaton AC, Solanki D, Salazar H, Folkerth S, Singla N, Minkowitz HS, et al. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of a bupivacaine hydrochloride implant in patients undergoing abdominoplasty. Reg Anesth Pain Med. 2023;48(12):601-7. doi: 10.1136/rapm-2022-104110.
  46. [46]. Ekelund A, Peredistijs A, Grohs J, Meisner J, Verity N, Rasmussen S. SABER-Bupivacaine Reduces Postoperative Pain and Opioid Consumption After Arthroscopic Subacromial Decompression: A Randomized, Placebo-Controlled Trial. J Am Acad Orthop Surg Glob Res Rev. 2022;6(5). doi: 10.5435/JAAOSGlobal-D-21-00287.
  47. [47]. Villadiego L, Baker BW. Improving Pain Management After Cesarean Birth Using Transversus Abdominis Plane Block With Liposomal Bupivacaine as Part of a Multimodal Regimen. Nurs Womens Health. 2021;25(5):357-65. doi: 10.1016/j.nwh.2021.07.009.
  48. [48]. Song K, Hao Y, Tan X, Huang H, Wang L, Zheng W. Microneedle-mediated delivery of Ziconotide-loaded liposomes fused with exosomes for analgesia. J Control Release. 2023;356:448-62. doi: 10.1016/j.jconrel.2023.03.007.
  49. [49]. Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, et al. Neuromodulation for chronic pain. Lancet. 2021;397(10289):2111-24. doi: 10.1016/S0140-6736(21)00794-7.
  50. [50]. Shi Y, Wu W. Multimodal non-invasive non-pharmacological therapies for chronic pain: mechanisms and progress. BMC Med. 2023;21(1):372. doi: 10.1186/s12916-023-03076-2.
  51. [51]. Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. Bmj. 2016;352:h6234. doi: 10.1136/bmj.h6234.
  52. [52]. Weinstein JN, Lurie JD, Tosteson TD, Tosteson AN, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976). 2008;33(25):2789-800. doi: 10.1097/BRS.0b013e31818ed8f4.
  53. [53]. Jarebi M, Awaf A, Lefranc M, Peltier J. A matched comparison of outcomes between percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for the treatment of lumbar disc herniation: a 2-year retrospective cohort study. Spine J. 2021;21(1):114-21. doi: 10.1016/j.spinee.2020.07.005.
  54. [54]. Rasouli MR, Rahimi-Movaghar V, Shokraneh F, Moradi-Lakeh M, Chou R. Minimally invasive discectomy versus microdiscectomy/open discectomy for symptomatic lumbar disc herniation. Cochrane Database Syst Rev. 2014;2014(9):Cd010328. doi: 10.1002/14651858.CD010328.pub2.
  55. [55]. Heider FC, Mayer HM. Surgical treatment of degenerative spondylolisthesis. Oper Orthop Traumatol. 2017;29(1):59-85. doi: 10.1016/j.otsr.2016.06.022.
  56. [56]. van Middelkoop M, Rubinstein SM, Ostelo R, van Tulder MW, Peul W, Koes BW, et al. Surgery versus conservative care for neck pain: a systematic review. Eur Spine J. 2013;22(1):87-95. doi: 10.1007/s00586-012-2553-z.
  57. [57]. Fletcher D, Stamer UM, Pogatzki-Zahn E, Zaslansky R, Tanase NV, Perruchoud C, et al. Chronic postsurgical pain in Europe: An observational study. Eur J Anaesthesiol. 2015;32(10):725-34. doi: 10.1097/EJA.0000000000000319.
  58. [58]. Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, et al. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil. 2015;96(4 Suppl):S156-72. doi: 10.1016/j.apmr.2014.11.010.
  59. [59]. Cosentino G, Fierro B, Vigneri S, Talamanca S, Palermo A, Puma A, et al. Impaired glutamatergic neurotransmission in migraine with aura? Evidence by an input-output curves transcranial magnetic stimulation study. Headache. 2011;51(5):726-33. doi: 10.1111/j.1526-4610.2011.01893.x.
  60. [60]. Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol. 2023;150:131-75. doi: 10.1016/j.clinph.2023.03.010.
  61. [61]. Wang F, Tian ZC, Ding H, Yang XJ, Wang FD, Ji RX, et al. A sensory-motor-sensory circuit underlies antinociception ignited by primary motor cortex in mice. Neuron. 2025. doi: 10.1016/j.neuron.2025.03.027.
  62. [62]. Alwardat M, Pisani A, Etoom M, Carpenedo R, Chinè E, Dauri M, et al. Is transcranial direct current stimulation (tDCS) effective for chronic low back pain? A systematic review and meta-analysis. J Neural Transm (Vienna). 2020;127(9):1257-70. doi: 10.1007/s00702-020-02223-w.
  63. [63]. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92. doi: 10.1016/j.clinph.2016.10.087.
  64. [64]. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150-206. doi: 10.1016/j.clinph.2014.05.021.
  65. [65]. Martimbianco ALC, Porfírio GJ, Pacheco RL, Torloni MR, Riera R. Transcutaneous electrical nerve stimulation (TENS) for chronic neck pain. Cochrane Database Syst Rev. 2019;12(12):Cd011927. doi: 10.1002/14651858.CD011927.pub2.
  66. [66]. Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev. 2020;115:238-50. doi: 10.1016/j.neubiorev.2020.06.007.
  67. [67]. MF DEO, Johnson DS, Demchak T, Tomazoni SS, Leal-Junior EC. Low-intensity LASER and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. Eur J Phys Rehabil Med. 2022;58(2):282-9. doi: 10.23736/S1973-9087.21.07236-1.
  68. [68]. Qaseem A, Wilt TJ, McLean RM, Forciea MA, Denberg TD, Barry MJ, et al. Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. Ann Intern Med. 2017;166(7):514-30. doi: 10.7326/M16-2367.
  69. [69]. Vas J, Aranda JM, Modesto M, Benítez-Parejo N, Herrera A, Martínez-Barquín DM, et al. Acupuncture in patients with acute low back pain: a multicentre randomised controlled clinical trial. Pain. 2012;153(9):1883-9. doi: 10.1016/j.pain.2012.05.033.
  70. [70]. Han X, Yu S. Non-Pharmacological Treatment for Chronic Migraine. Curr Pain Headache Rep. 2023;27(11):663-72. doi: 10.1007/s11916-023-01162-x.
  71. [71]. Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2017;4(4):Cd011279. doi: 10.1002/14651858.CD011279.pub3.
  72. [72]. Wieckiewicz M, Boening K, Wiland P, Shiau YY, Paradowska-Stolarz A. Reported concepts for the treatment modalities and pain management of temporomandibular disorders. J Headache Pain. 2015;16:106. doi: 10.1186/s10194-015-0586-5.
  73. [73]. Eccleston C, Williams AC, Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev. 2009(2):Cd007407. doi: 10.1002/14651858.CD007407.pub2.
  74. [74]. Eccleston C, Hearn L, Williams AC. Psychological therapies for the management of chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2015;2015(10):Cd011259. doi: 10.1002/14651858.CD011259.pub2.

How to Cite

“Advances of Chronic Pain: Better Insights, Better Treatment”. Human Brain, vol. 4, no. 1, June 2025, https://doi.org/10.37819/hb.1.2065.

How to Cite

“Advances of Chronic Pain: Better Insights, Better Treatment”. Human Brain, vol. 4, no. 1, June 2025, https://doi.org/10.37819/hb.1.2065.

HTML
22

Total
3 4

Citations
undefined

Share

Downloads

Article Details

Most Read This Month

Most read articles by the same author(s)

License

Copyright (c) 2025 Fengrun Sun, Ning Yu, Tao Wang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Most read articles by the same author(s)